15 research outputs found

    Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves

    Get PDF
    AbstractCellular lamellipodia bind to the matrix and probe its rigidity through forces generated by rearward F-actin transport. Cells respond to matrix rigidity by moving toward more rigid matrices using an unknown mechanism. In spreading and migrating cells we find local periodic contractions of lamellipodia that depend on matrix rigidity, fibronectin binding and myosin light chain kinase (MLCK). These contractions leave periodic rows of matrix bound β3-integrin and paxillin while generating waves of rearward moving actin bound α-actinin and MLCK. The period between contractions corresponds to the time for F-actin to move across the lamellipodia. Shortening lamellipodial width by activating cofilin decreased this period proportionally. Increasing lamellipodial width by Rac signaling activation increased this period. We propose that an actin bound, contraction-activated signaling complex is transported locally from the tip to the base of the lamellipodium, activating the next contraction/extension cycle

    Quantification of Cell Movement Reveals Distinct Edge Motility Types During Cell Spreading

    Get PDF
    Actin-based motility is central to cellular processes such as migration, bacterial engulfment, and cancer metastasis, and requires precise spatial and temporal regulation of the cytoskeleton. We studied one such process, fibroblast spreading, which involves three temporal phases: early, middle, and late spreading, distinguished by differences in cell area growth. In these studies, aided by improved algorithms for analyzing edge movement, we observed that each phase was dominated by a single, kinematically and biochemically distinct cytoskeletal organization, or motility type. Specifically, early spreading was dominated by periodic blebbing; continuous protrusion occurred predominantly during middle spreading; and periodic contractions were prevalent in late spreading. Further characterization revealed that each motility type exhibited a distinct distribution of the actin-related protein VASP, while inhibition of actin polymerization by cytochalasin D treatment revealed different dependences on barbed-end polymerization. Through this detailed characterization and graded perturbation of the system, we observed that although each temporal phase of spreading was dominated by a single motility type, in general cells exhibited a variety of motility types in neighboring spatial domains of the plasma membrane edge. These observations support a model in which global signals bias local cytoskeletal biochemistry in favor of a particular motility type

    Evidence for hierarchical control of conserved, discrete motility types in crawling motility

    No full text
    The 20th century saw a remarkable explosion of knowledge regarding the mechanisms of cell motility, with the recognition that different classes of motility are involved in almost every cell function. One class, crawling motility, is typical of metazoan derived tissue culture cells. We have developed a quantitative cell-spreading assay for describing crawling motility and have identified a small number of discrete, cytoskeletal organizations, or motility types. Each motility type is characterized by a specific organization of actin polymerization, myosin activity, and adhesion formation, and all have been observed during mouse fibroblast cell spreading as well as across a range of eukaryotic phyla and cell types. During spreading, cells exhibit a series of functional phases, including early adhesion and fast spreading, each with a different combination of motility types. The final phase of spreading is characterized by periodic lamellipodial contractions, a motility type that coordinates adhesion formation and edge protrusion, allowing for eventual polarization and migration. We propose that this hierarchy of functional phases and conserved, discrete motility types represents a general organizational principle in motility regulation

    Opposing Effects of PKCθ and WASp on Symmetry Breaking and Relocation of the Immunological Synapse

    Get PDF
    SummaryThe immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCθ, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCθ−/− T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp−/− T cells displayed normal IS formation but were unable to reform IS after migration unless PKCθ was inhibited. Thus, opposing effects of PKCθ and WASp control IS stability through pSMAC symmetry breaking and reformation
    corecore